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Abstract Plant-inhabiting microorganisms interact directly
with each other, forming complex microbial interaction net-
works. These interactions can either prevent or facilitate the
establishment of new microbial species, such as a pathogen
infecting the plant. Here, our aim was to identify the most
likely interactions between Erysiphe alphitoides, the causal
agent of oak powdery mildew, and other foliar microorgan-
isms of pedunculate oak (Quercus robur L.). We combined
metabarcoding techniques and a Bayesian method of network
inference to decipher these interactions. Our results indicate
that infection with E. alphitoides is accompanied by signifi-
cant changes in the composition of the foliar fungal and bac-
terial communities. They also highlight 13 fungal operational
taxonomic units (OTUs) and 13 bacterial OTUs likely to in-
teract directly with E. alphitoides. Half of these OTUs, includ-
ing the fungal endophytes Mycosphaerella punctiformis and
Monochaetia kansensis, could be antagonists of E. alphitoides
according to the inferred microbial network. Further studies
will be required to validate these potential interactions exper-
imentally. Overall, we showed that a combination of
metabarcoding and network inference, by highlighting
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potential antagonists of pathogen species, could potentially
improve the biological control of plant diseases.
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Introduction

Almost all plant tissues host a microbial community [1].
These microbes interact with each other directly through
pairwise ecological interactions such as predation, parasitism,
mutualism, or competition [2]. The interactions can involve
microorganisms belonging to the same kingdom or different
kingdoms [3]. They can involve plant-beneficial microorgan-
isms as well as plant pathogens [4]. The notion that the path-
ogens live and interact with other microorganisms has recently
led to the development of the “pathobiome” concept, in which
the pathogenic agent is integrated into its biotic environment
[5]. Elucidation of the components of the pathobiome is a
prerequisite for understanding the pathogenesis, persistence,
transmission, and evolution of pathogenic agents [5].
Pathobiome studies will lead to new approaches to plant
protection, paralleling those currently being developed for
the study of human diseases [6]. The role of the commensal
flora in animal health is, indeed, well recognized [7], and its
manipulation to treat human diseases is a highly promising
and competitive field of current medical research [8, 9].
Similar approaches should be considered to improve plant
health [10, 11]. A current challenge is therefore to decipher
the interactions between plant pathogens and the resident
microbial community to better understand the mechanisms
of plant disease resistance and to improve methods of bio-
logical control [12, 13].

@ Springer


http://dx.doi.org/10.1007/s00248-016-0777-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-016-0777-x&domain=pdf

B. Jakuschkin et al.

Ecological networks are now the standard method for
representing and analyzing direct interactions between spe-
cies. Network architecture governs the stability of ecological
communities [14, 15], including their invasibility by new spe-
cies [16]. In the case of microbial communities, networks
often represent associations between species rather than inter-
actions. Microbial association networks typically contain pos-
itive links (indicating species co-occurrence) and negative
links (indicating co-exclusion). These associations can arise
from direct interactions between species. A positive associa-
tion between two species can, for instance, reveal a mutualistic
interaction, while a negative association can arise from com-
petition. Alternatively, associations can reflect indirect inter-
actions between species (i.e., mediated by a shared interacting
partner), or shared environmental requirements [12]. Several
methods have been developed to detect associations between
microbial species from metabarcoding datasets [2, 12, 17—19],
but there is no standard method for highlighting direct ecolog-
ical interactions.

In the present study, we used a Bayesian method of net-
work inference [20, 21] to decipher the pathobiome of
Erysiphe alphitoides, the causal agent of oak powdery mildew
[22, 23]. This fungus, which covers oak leaves with spots or
patches of white mycelium and spores, causes one of the most
common diseases in European forests [22]. Like most pow-
dery mildews, E. alphitoides grows superficially on leaves,
sometimes covering up to 80 % of the upper leaf surface,
whilst obtaining resources from leaf cells via haustoria [24].
E. alphitoides interacts directly with certain foliar microorgan-
isms, such as the mycoparasites of the genus Ampelomyces
[25]. Tt can also interact indirectly with other microorganisms
by altering the chemistry and physiology of oak leaves [26,
27]. Our aim here was to better understand the relationships
between the fungal pathogen E. alphitoides and other foliar
microorganisms of oak (Quercus robur L.), including both
epiphytes and endophytes. We specifically addressed the fol-
lowing questions: (1) Is infection with E. alphitoides accom-
panied by changes in the composition of the foliar microbial
community? (2) Which microbial species are the most likely
to interact directly with E. alphitoides?

Materials and Methods
Study Site and Sampling Design

We sampled three trees with different levels of susceptibility
to the pathogen, in order to obtain a gradient of infection
levels. The three trees belonged to a full-sib family of
Q. robur L. planted for a field experiment established in
2000 at INRA-Bourran, in South West France (44.20° N,
0.24° W) [28]. They were located within 5 m of each other.
They were previously characterized as highly susceptible,
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intermediately resistant, and strongly resistant to powdery mil-
dew on the basis of 5 years of visual observations (Desprez-
Loustau M-L, personal communication).

On July 29th 2011, we collected 40 leaves per tree: 10
leaves from each of four branches at an approximate height
of 2 m. The leaves chosen were evenly spaced between the
trunk and the tip of the branch. We collected leaves strictly
from the first flush. We measured the level of powdery mildew
infection as the proportion of the upper leaf area displaying
symptoms. We also determined the position of each leaf with-
in the canopy: its distance to the ground, to the base of the
branch, to the tree trunk, and the orientation of the branch
(South-West versus North-East). Each leaf was then cut at
the base of the petiole and placed in a sterile bag containing
silica gel. The bags, which were hermetically sealed, were
then stored in the dark at +18 °C in the laboratory. A prelim-
inary experiment had been performed previously to assess the
effect of storing oak leaves in silica gel on the composition of
the fungal community inferred by 454 pyrosequencing. We
found no significant difference between the communities of
fresh leaves and those of leaves stored in silica gel (Methods
S1).

Leaf DNA Extraction

Leaf DNA extraction was performed 3 months after sampling.
We prepared the leaf material for DNA extraction in a laminar
flow hood. Sample contamination was prevented by
disinfecting the hood and all tools with sodium hypochlorite
followed by 70 % ethanol and then exposing them to UV light
for 40 min. Plastic ware and tungsten carbide beads were
autoclaved for 2 h before use. Similarly, the tools used for leaf
handling were sterilized before each use, by dipping in 70 %
alcohol and flaming over an electric Bunsen burner. We used a
metal corer to excise two 0.5-cm? discs from each side of the
middle leaf vein. The four discs were evenly distributed over
the leaf, and their positions were selected at random, without
consideration of any visible symptoms of E. alphitoides infec-
tion. The four discs were then placed in a collection microtube
(QIAGEN DNeasy® 96 Plant Kit) containing one tungsten
carbide bead. We used Geno/Grinder® (SPEX SamplePrep,
Metuchen, NJ, USA) to homogenize the leaf material, at
1600 strokes per minute for 90 s. Homogenized samples were
stored at —80 °C overnight. We used the QIAGEN DNeasy 96
Plant Kit to extract the DNA (following the protocol for frozen
plant tissue). We determined the DNA concentration with
NanoDrop 8000 and diluted all DNA working solutions to

1ng pul ™
Amplification and Sequencing of the Fungal Assemblages

We used the rapidly evolving internal transcribed spacer 1
(ITS1) as the DNA metabarcoding marker for fungi [29].
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We used titanium fusion primers for the PCR amplification, as
follows. The forward primers were composed of the 454 A-
adaptor, a sample-specific 6-bp tag, and the ITS1F primer
[30]. The reverse primer consisted of the B-adaptor and the
ITS2 primer [31] (Tab. S1). The PCR mixture (50 pl)
contained 2.5 units of Silverstar Tag polymerase
(Eurogentec), 5 ul of the 10x PCR buffer supplied by the
manufacturer, 2 pl MgCl, (50 mM), 2 ul dNTPs (5 mM),
1 ul of each primer (10 uM), 0.5 pl of 100 mg ml™' BSA,
and 5 ng DNA template. PCR was carried out as follows: an
initial phase at 95 °C (5 min), followed by 35 cycles of 95 °C
(30's), 54 °C (60 s), and 72 °C (90 s) and a final step at 72 °C
(10 min). Samples were amplified in triplicate and pooled for
purification with AMPure magnetic beads (Beckman Coulter
Genomics, Danvers, MA, USA). DNA concentration was de-
termined with a NanoDrop 8000, and the samples were pooled
in equimolar ratios to obtain the amplicon libraries. We used
40 tags in total, generating one amplicon library per tree. The
libraries were sequenced in separate 1/8th runs on a 454 GS
Junior sequencer (454 Life Sciences, Branford, CT, USA) at
the Centre de Génomique Fonctionnelle de Bordeaux (CGFB,
Bordeaux, France). Sequencing was unidirectional and started
with the A adaptor. The 454 sff files are available from the
European Nucleotide Archive (http://www.ebi.ac.uk/ena/data/
view/PRJEB7319).

Amplification and Sequencing of the Bacterial
Assemblages

We applied the microbiome profiling method developed by
Gloor et al. [32], which uses combinatorial sequence tags
attached to PCR primers to amplify the hypervariable V6 re-
gion of the 16S rRNA gene [33]. This tagging, together with
the Illumina paired-end protocol, made it possible to examine
hundreds of samples with far fewer primers (Tab. S2) than
would be required if the tags were incorporated at only one
end. The PCR mixture (50 pl) contained 2.5 units of Silverstar
Tag polymerase (Eurogentec), 5 pl of the 10x PCR buffer
supplied by the manufacturer, 2 nl MgCl, (50 mM), 2 ul
dNTPs (5 mM), 1 ul of 10 uM forward primer, 1 pl of
10 uM reverse primer, 0.5 pl of 100 mg ml™' BSA, and
5 ng DNA template. PCR was carried out as follows: an initial
phase at 95 °C (2 min), followed by 30 cycles of 95 °C (30 s),
56 °C (30 s), and 72 °C (30 s) and a final extension at 72 °C
(5 min). Samples were amplified in triplicate and pooled for
purification with AMPure magnetic beads (Beckman Coulter
Genomics, Danvers, MA, USA). We quantified the PCR prod-
ucts with the Nanodrop 8000 and pooled them at equimolar
ratios. The final DNA library was sequenced on the Illumina
platform GAIIx at the Centre de Génomique Fonctionnelle de
Bordeaux (CGFB, Bordeaux, France). The fastq files are
available from the European Nucleotide Archive (http://
www.ebi.ac.uk/ena/data/view/PRIEB7319).

Processing of the Fungal 454 Pyrosequencing Data

We used QIIME v.1.7.0 [34] for quality filtering,
demultiplexing, and noise reduction. After the removal of tags
and primers, all sequences shorter than 100 nucleotides were
discarded. Quality filtering was achieved with a sliding win-
dow test for quality scores, with a window size of 50 nucleo-
tides and a minimum quality score of 25. The sequences were
truncated at the beginning of the poor-quality window and
tested for the minimum sequence length of 100 nucleotides.
The highly conserved ribosomal genes flanking the ITS1
marker may distort sequence clustering and similarity
searches. We therefore removed them from the dataset with
Fungal ITS Extractor 1.1 [35]. ITS1 sequences shorter than
100 nucleotides were discarded, and sequences longer than
280 nucleotides were trimmed at the 3’-end. Before the clus-
tering step, we combined the dataset with a larger, unpub-
lished 454 fungal dataset acquired by sampling leaves from
other oak trees, to reduce the number of singletons. We
discarded singleton reads before clustering to minimize spuri-
ous operational taxonomic unit (OTU) identifications.

OTUs were clustered with UPARSE-OTU [36], an algo-
rithm implemented within Usearch v.7 [37] that simultaneous-
ly performs chimera filtering and OTU clustering. This algo-
rithm identifies a set of OTU representative sequences at the
97 % sequence similarity threshold, corresponding roughly to
the difference at species level [38]. Unfortunately, other
Erysiphe species, such as Erysiphe quercicola and Erysiphe
hypophylla, have an ITS sequence differing from that of
E. alphitoides by less than 3 % [22]. The ITS sequences of
these species therefore cluster together when a 97 % similarity
threshold is used. We overcame this problem by performing a
BLAST search of all sequences against a custom-made taxo-
nomic database of the genus Erysiphe. Before OTU clustering
with UPARSE-OTU, we extracted all sequences with success-
ful hits against E. alphitoides into a separate file and assigned
the corresponding read counts.

All fungal OTUs were then taxonomically assigned by
performing by BLAST searches against the Fungal ITS
Database [39] (as of March 15, 2012). We modified the taxo-
nomic file associated with this database to equalize the length
of taxonomic ranks using the NCBI Taxonomy Browser. We
also corrected a few incorrect taxonomic assignments in the
case of Erysiphe species and removed a few non-fungal se-
quences. We used this database to assign a taxon to the most
abundant sequence of each OTU, using QIIME (v.1.7.0) with
standard settings (BLAST searches, e-value: 0.001, minimum
percent identity: 90). We also compared the representative
sequence of each OTU with the sequences deposited in
GenBank, using the BLASTn algorithm [40], to exclude pos-
sible Q. robur sequences and to carefully check the taxonomic
assignments of the fungal OTUs associated to E. alphitoides.
These latter were also compared to the taxonomic assignments
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obtained from the RDP Classifier [41] using the UNITE
Fungal ITS Trainset (July 4, 2014) as a reference database
[42].

Processing of the Bacterial Illumina Solexa Data

We assembled the paired-end reads with PANDAseq [43].
Reads were then demultiplexed as described by Gloor et al.
[32], with a custom Bash shell script. We removed oak chlo-
roplast sequences before clustering. OTUs were then clustered
as described for fungi. The origin of the OTU representative
sequences (archaeal, bacterial, nuclear eukaryote, mitochon-
drial, or chloroplast origin) was determined with Metaxa [44],
and we retained only the bacterial OTUs. Taxonomic assign-
ments of all bacterial OTUs were performed with the RDP
Classifier program (v.2.5) [41], as implemented in QIIME
(v.1.7.0), with standard settings and Greengenes 13 5 as the
reference sequences. The taxonomic assignments of the bac-
terial OTUs associated to E. alphitoides were moreover care-
fully checked by BLASTn against GenBank [40], and by
using the RDP Classifier [41] with the 16s rRNA training
set 14 (May 2015) as a reference database [42].

Comparison of Infection Levels Between Trees

All statistical analyses were performed in R [45]. We first
verified that the three trees differed in their level of suscepti-
bility to E. alphitoides. The effect of tree on the percentage of
the upper leaf area displaying symptoms (arc-sine
transformed) was assessed with a generalized linear model
(GLM) with a Gaussian distribution. A second model was
built to assess differences in the number of E. alphitoides
reads between trees. We did not rarefy the data [46] but rather
took into account the total number of reads per sample (log-
transformed) as an offset. We controlled for overdispersion by
using a negative binomial generalized linear model
(NBGLM).

Relationship Between the Level of Infection
with E. alphitoides and the Composition of Foliar
Microbial Communities

All analyses described hereafter were performed on the data
for the susceptible tree. We first investigated whether the num-
ber of reads assigned to E. alphitoides could be used as a
proxy for the level of infection, by testing the effect of the
percentage of the upper leaf area displaying symptoms on
the number of E. alphitoides reads, using a NBGLM. The total
number of reads per sample (log-transformed) was included as
an offset.

We then investigated the relationship between the level of
infection with E. alphitoides and the composition of foliar
microbial communities. We used principle coordinates
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analyses (PCoA) on rarefied datasets to visualize differences
in microbial community composition between leaves.
Compositional dissimilarities between leaves were assessed
using the Bray-Curtis index. The rarefaction threshold was
1226 reads for fungal data and 114 reads for bacterial data.
The reads assigned to E. alphitoides were not included in the
fungal dataset because they were used as an explanatory var-
iable for variations in fungal community composition. We
strengthened the robustness of our results to rarefaction, by
performing 100 rarefactions, followed by 100 PCoAs. We
calculated the mean and the standard error of the mean for
the coordinates of the samples on the first two axes of the
PCoA. The mean coordinates on the first two axes (compl
and comp2, respectively) were used as proxies for microbial
community composition. The effect of the percentage of
E. alphitoides reads on these two variables was investigated
with a GLM with a Gaussian distribution.

We finally investigated the associations between microbial
OTUs and leaf type (highly infected with E. alphitoides versus
“uninfected”), using the point biserial correlation coefficient.
A leaf was considered to be highly infected if the percentage
of reads assigned to E. alphitoides exceeded 5 %.
Associations between OTUs and leaf type were calculated
for all OTUs accounting for more than 0.5 % of the sequences
for the tree susceptible to E. alphitoides.

Statistical Inference of the Putative Direct Interactions
Between E. alphitoides and Other Members of the Foliar
Community

A previous study [12] has revealed a very high number of
microbial associations within foliar microbial communities
of oak. Here, we attempted to remove associations due to
shared environmental requirements (e.g., two OTUs are asso-
ciated because both are adapted to shade leaves) and shared
interacting partners (e.g., two OTUs are associated because
both are parasites of a third OTU). We highlighted the most
likely interactions between E. alphitoides and other foliar mi-
croorganisms, by constructing a microbial network having
OTUs as nodes and putative direct interactions between
OTUs as edges. Network construction was based on a subset
of the most abundant OTUs: 48 bacterial OTUs and 66 fungal
OTUs (including E. alphitoides). Each represented at least
0.5 % of the sequences for at least one of the three trees.

We first attempted to remove associations due to shared
environmental requirements by fitting the number of reads
for each OTU using NBGLMs with environmental variables
as predictors and the total number of reads per sample (log-
transformed) as an offset. GLMs with a Poisson distribution
were used for a few OTUs. The position of a leaf within the
canopy was taken as a proxy for its abiotic environment (e.g.,
temperature, UV exposure). The four variables describing the
position of the sampled leaves—their distances to the ground,



Deciphering the Pathobiome

to the base of the branch, and to the tree trunk, and the orien-
tation of the branch—were included in the GLM as single
predictive factors. The Pearson residuals obtained from the
fitted models were used to model the dependence structure
between the OTUs, using Gaussian copulas.

We then attempted to remove associations due to shared
interacting partners, by using the Bayesian network inference
method [20] implemented in the R package saturnin [21]. The
method considered a class of acyclic unidirectional networks
(called spanning trees) to explain the dependence structure be-
tween the OTUs. Direct edges between OTUs were obtained
by averaging (in an exhaustive manner) over these simple net-
works, thus counterbalancing their individual simplicity. This
averaging can result in cycles or disconnected OTUs in the
inferred network. The inferred network therefore had OTUs
as nodes, and only direct dependencies between OTUs as
edges. The inference yielded, for any possible edge, the prob-
ability of its belonging to the true network. The prior probabil-
ity of interactions was fixed at 0.5. Only edges with an apparent
posterior probability greater than 0.5 were retained in the inter-
action network. The sign of the interactions was determined
from the sign of the a posteriori maximum of the correlation
in the associated bivariate Gaussian copula.

The inferred microbial network had positive and negative
edges, which were visualized with Gephi (v. 0.8.2 beta) soft-
ware [47]. Based on the theoretical outcome of each type of
interaction for each interacting partner (positive (+), negative
(-) ornull (0); see [2]), positive edges may indicate mutualism
(+/*) or commensalism (+/0). Negative edges may indicate
competition (—/—) or amensalism (—/0). The correspondence
between network edges and parasitism or predation (+/-) is
less straightforward to predict.

Results

Taxonomic Composition of Oak Foliar Microbial
Communities

Sequencing of the fungal ITS1 amplicon libraries yielded
297888 sequences, 259075 (86.97 %) of which passed the
quality filtering procedures, and 251039 (84.27 %) of which
were retained after the elimination of singleton sequences and
after chimera filtering. The number of sequences per sample
ranged from 1202 to 3725, with a mean of 2166 and a median
of 2146. These sequences clustered into 1074 OTUs. Two
OTUs assigned to Q. robur were excluded from the dataset.
A putative taxonomic identification could be assigned to 747
of the remaining OTUs. Consistent with previous findings for
foliar fungal communities [48—50], the taxonomically
assigned OTUs were dominated by Ascomycota (492 OTUs,
55.1 % of the high-quality sequences), followed by
Basidiomycota (252 OTUs, 10.5 %). One OTU was assigned

to Glomeromycota and two to Zygomycota. The taxonomic
composition of the foliar communities at the phylum and order
levels is provided in the supplementary materials (Fig. S1).

Sequencing of the bacterial 16S amplicon pool yielded
30.5x 10° sequences, 28.1 x 10° of which were oak chloro-
plast sequences that were filtered out. OTU clustering yielded
1507 OTUs, 820 of which were of bacterial origin. The num-
ber of bacterial sequences per sample ranged from 73 to
11706, with a mean of 1160 and a median of 668.
Taxonomic assignment was possible for 816 of the bacterial
OTUs. The bacterial phyla associated with the oak leaves
were dominated by Proteobacteria (406 OTUs, 49 % of the
high-quality bacterial sequences), composed of
Alphaproteobacteria (205 OTUs, 25 %), Betaproteobacteria
(96 OTUs, 12 %), Gammaproteobacteria (76 OTUs, 9 %),
and Deltaproteobacteria (29 OTUs, 4 %). The other phyla
identified were Firmicutes (175 OTUs, 21 %),
Actinobacteria (114 OTUs, 14 %), Bacteroidetes (83 OTUs,
10 %), Acidobacteria (11 OTUs, 1 %), and others (31 OTUs,
4 %). The detailed taxonomic composition of the community
at the phylum and order levels is provided in the supplemen-
tary materials (Fig. S2).

Comparison of Infection Levels Between Trees

As expected, the three trees differed significantly in both the
percentage of the upper leaf area displaying symptoms (GLM;
F=30.72, df1=2, df2=113, p<0.001) and the number of
E. alphitoides reads (NBGLM; Chi*=91.62, df=2,
p<0.001). The percentage of the upper leaf area displaying
symptoms of E. alphitoides infection and the number of
E. alphitoides reads were significantly higher for the tree pre-
viously characterized as highly susceptible to powdery mil-
dew than for the other two trees (Fig. 1).

These analyses revealed that E. alphitoides symptoms and
reads were almost absent from the intermediately resistant tree
and the strongly resistant tree. The percentage of the upper leaf
area displaying symptoms was 12.9 % for the highly suscep-
tible tree, 1.3 % for the tree with intermediate resistance, and
0.4 % for the highly resistant tree. The percentage of
E. alphitoides reads was 5.4 % for the highly susceptible tree,
0.17 % for the tree with intermediate resistance, and 0.01 %
for the highly resistant tree. In addition, E. alphitoides symp-
toms and reads showed large variations in abundance among
leaves of the susceptible tree. The percentage of the upper leaf
area displaying symptoms ranged from 0 to 80 %. The per-
centage of E. alphitoides reads ranged from 0 to 26.9 %.
Therefore, we used the data collected for the susceptible tree
to analyze the relationships between E. alphitoides and the
residential microbial community. All analyses described be-
low, including network inference, were performed on the data
for the susceptible tree.
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Fig. 1 Percentage of a the upper leaf area displaying symptoms and b
reads assigned to the fungal pathogen Erysiphe alphitoides for three oak
trees (Quercus robur L.) previously characterized as highly susceptible,
intermediately resistant or highly resistant to powdery mildew on the
basis of 5 years of visual observations. Box and whisker plots show the
median percentage (thick black line), the quartiles (boxes), and the
quartiles plus (or minus) one and a half times the interquartile range
(whiskers). Outliers are shown as circles. Letters indicate the results of
Tukey’s test for pairwise comparisons. Different letters indicate
significant differences between trees

Relationship Between the Level of Infection
with E. alphitoides and the Composition of Foliar
Microbial Communities

The analysis of leaves from the susceptible tree showed that
the number of reads assigned to E. alphitoides increased sig-
nificantly with the percentage of the upper leaf area displaying
symptoms (NBGLM; Chi*=12.14, df=1, p<0.001; Fig. 2).
The number of reads assigned to E. alphitoides was therefore
used as a proxy for the level of infection.

Principal coordinate analysis revealed that the level of infec-
tion with E. alphitoides was significantly related to fungal com-
munity composition. The percentage of E. alphitoides reads
had a significant effect on compl (GLM; F=17.21, dfl=1,
df2=37, p<0.001), but not on comp2 (GLM; F=0.41,
dfl =1, df2=37, p=0.52). Differences in the percentage of
E. alphitoides reads thus accounted for the differences in com-
position observed along the first axis of the PCoA (Fig. 3).
Highly infected leaves had a higher abundance of OTU 3 (tax-
onomically unassigned at the species level). Leaves with a low
abundance of E. alphitoides were separated into two groups
differing in terms of their fungal community composition.
The first group had a high abundance of OTU 1 (assigned to
Naevala minutissima), OTU 10 (unassigned), and OTU 19
(unassigned). The second group had a high abundance of
OTU 1278 (assigned to Mycosphaerella punctiformis).

Analyses of associations between fungal OTUs and leaf
type (highly infected with E. alphitoides versus “uninfected”)
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Fig. 2 Relationship between the percentage of the upper leaf area
displaying symptoms and the number of reads assigned to the fungal
pathogen Erysiphe alphitoides, across leaves sampled from an oak tree
(Quercus robur L.) highly susceptible to E. alphitoides. The number of
reads was obtained from a rarefied dataset with 1466 sequences per
sample. The solid gray line shows the predictions of a negative
binomial generalized linear model. Dotted lines indicate the standard
errors of the predictions

confirmed these results (Tab. S3). OTU 3 was significantly
associated with highly infected leaves (r=0.38, p=0.03),
whereas OTU 1278 and OTU 19 were significantly associated
with uninfected leaves (r=0.39, p=0.02 and r=0.39,
p=0.009, respectively). Moreover, OTU 26 (assigned to

@
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@
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PCoA1 (33.99%)

Fig.3 Principal coordinates analysis showing Bray-Curtis dissimilarities
in fungal community composition between the leaves of an oak tree
(Quercus robur L.) highly susceptible to the fungal pathogen Erysiphe
alphitoides. The colors indicate the level of infection with E. alphitoides
for each leaf, measured as the percentage of reads assigned to
E. alphitoides. The OTUs driving variation in fungal community
composition are indicated in dark gray. E. alphitoides was considered
to be external to the fungal community. The ordination was based on
100 rarefied datasets and was very robust to rarefaction
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Taphrina carpini) and OTU 28 (assigned to Sporobolomyces
gracilis) were also associated with infected (r=0.33, p=0.05)
and uninfected leaves (r=0.47, p=0.003), respectively.

Similar to what was observed for the fungal community,
the composition of the bacterial community was related to the
level of infection with E. alphitoides (GLM; F=9.84, dfl =1,
df2=37, p=0.003 for compl; F=0.12, dfl =1, df2=37,
p=0.72 for comp2). Analyses of associations between bacte-
rial OTUs and leaf type (highly infected with E. alphitoides
versus “uninfected”) showed that 28 bacterial OTUs signifi-
cantly increased in abundance with infection (Tab. S3). OTU
444 (assigned to Methylobacterium sp.) was most strongly
associated with infected leaves (r=0.52, p=0.001).
Nevertheless, principal coordinate analysis did not reveal clear
differences in composition between infected and healthy
leaves (Fig. S3). This result may be accounted for by the
low rarefaction threshold used for analysis of the bacterial
dataset (114 sequences per sample).

Putative Interactions between E. alphitoides and Other
Members of the Foliar Community

The microbial interaction network inferred for the susceptible
tree had 1099 edges, 65 % of which were positive.
E. alphitoides was involved in 26 interactions in total (Fig. 4):
13 with fungal OTUs (6 positive, 7 negative) and 13 with
bacterial OTUs (6 positive, 7 negative). The list of these
OTUs is provided in Table 1, together with their taxonomic
assignments. Corresponding sequences are available in the sup-
plementary materials (Text S1 and S2). The majority of the
fungal species highlighted in ordination and association analy-
ses were considered likely to interact directly with
E. alphitoides (Tab. S3). OTU 1 (assigned to N. minutissima),
OTU 10, OTU19 (both taxonomically unassigned at the species
level), OTU 28 (assigned to Sporobolomyces gracilis) and
OTU 1278 (assigned to Mycosphaerella punctiformis) were
linked to E. alphitoides by negative edges. OTU 26 (assigned
to Taphrina carpini) was linked to E. alphitoides through a
positive edge. The network inference highlighted seven other
fungal OTUs likely to interact directly with E. alphitoides. Both
OTU 2 (also assigned to M. punctiformis) and OTU 15
(assigned to Monochaetia kansensis) were linked negatively
to E. alphitoides. The network inference also revealed that
among the 28 bacterial OTUs that significantly increase in
abundance with infection, only 5 were likely to interact directly
with E. alphitoides. These 5 OTUs were linked positively to
E. alphitoides in the network (Tab. S3).

Discussion

The pathobiome concept has been defined in the context of
microbial community interactions [5]. It can be viewed as a

Fig. 4 Model of the pathobiome of Erysiphe alphitoides on oak leaves
(Quercus robur L.). Network nodes correspond to microbial OTUs.
OTUs are linked if they are likely to interact together through direct
ecological interactions, according to the results of a Bayesian model of
network inference. The large gray node corresponds to E. alphitoides
(Ea). Small black nodes correspond to bacterial OTUs. The large green
nodes are fungal OTUs positively associated with Ea. The large red nodes
are fungal OTUs negatively associated with Ea. Interactions between Ea
and other OTUs are represented in green when the OTUs are positively
associated and in red when they tend to exclude each other. Interactions
between the interacting partners of Ea are shown in gray. The names of
the fungal OTUs that could be assigned to species level are indicated. Cc:
Cladosporium cladosporioides; Li: Lalaria inositophila; Nm: Naevala
minutissima; Mp: Mycosphaerella punctiformis; Mk: Monochaetia
kansensis; Tc: Taphrina carpini; Sg: Sporobolomyces gracilis; Sr:
Sporobolomyces roseus

subset of the microbiome of a host, centered on a pathogen
species. The microbiome corresponds to the totality of mi-
crobes (bacteria, archaea, and fungi) in a given environment
and the totality of functions performed by this microbiota [51].
The pathobiome can thus be defined as the totality of microbes
interacting with a given pathogen species and their influence
on pathogenesis. We showed here that the pathobiome can be
studied by combining metabarcoding and network inference
analyses.

There are several prerequisites for studies of the
pathobiome of a given pathogen by combining metabarcoding
and network inference. First, there should be a significant
relationship between the abundance of a microbial species
and the number of sequences assigned to it. In particular, there
should be a significant relationship between the level of infec-
tion with the pathogen and the number of sequences assigned
to it. This condition was met for E. alphitoides, the causal
agent of oak powdery mildew [22, 23], at both the leaf and
tree levels. These results are consistent with those recently
obtained by Sapkota et al. [52] for two foliar diseases of ce-
reals. Another prerequisite is good preservation of the compo-
sition of the microbial community during tissue storage before

@ Springer
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Table 1 Taxonomic assignment of the 26 operational taxonomic units
(OTUs) potentially interacting with Erysiphe alphitoides (Ea) according
to the inferred microbial network. The sign of the interaction indicates
whether the OTUs are positively or negatively associated to
E. alphitoides. Taxonomic assignments were performed by using the

RDP Classifier and by BLAST analysis of OTU representative
sequences against GenBank. Coverage is the percentage of the query
length covered by the alignment. Similarity is the percentage identity

over the alignment

Phylum OTU Interaction  Taxonomic classification in RDP Closest match ~ Coverage (%)  Similarity (%)  Putative species/genus
with Ea (confidence > 80%) in GenBank
Fungi 19 —0.244 Fungi (99 %) - - - NA
10 —0.194 Ascomycota (83 %) - - - NA
1 -0.179 Ascomycota (100 %), AY853228.1 100 100 Naevala minutissima
Helotiales (87 %)
1278  -0.179 Ascomycota (100 %) KC339234.1 100 97 Mycosphaerella
punctiformis
28 —-0.161 Basidiomycota (100 %), KJ706995.1 100 99 Sporobolomyces gracilis
Sporidiobolales (100 %),
Sporobolomyces gracilis (99 %)
15 —0.145 Ascomycota (100 %), Xylariales KC345691.1 100 100 Monochaetia kansensis
(100 %), Monochaetia
kansensis (100 %)
2 —0.139 Ascomycota (100 %) KC339234.1 100 100 Mycosphaerella
punctiformis
1567 0.124 Basidiomycota (100 %), - - - NA
Cystofilobasidiales (100 %)
9 0.146 Ascomycota (100 %), KP836326.1 100 100 Cladosporium
Capnodiales (100 %), cladosporioides
Davidiella tassiana (100 %)
25 0.178 Basidiomycota (90 %) - - - NA
23 0.181 Basidiomycota (100 %) HG008766.1 100 99 Sporobolomyces
roseus
20 0.241 Ascomycota (100 %), Taphrinales AY239214.1 100 100 Lalaria inositophila
(100 %), Lalaria inositophila
(100 %)
26 0.265 Ascomycota (100 %), Taphrinales AF492085.1 100 100 Taphrina carpini
(100 %), Lalaria carpini (100 %)
Bacteria 625 —0.243 Betaproteobacteria (99 %), KR265624.1 97 97 Acidovorax sp.
Burkholderiales (99 %)
27 —0.221 Betaproteobacteria (99 %), IN545036.1 100 98 Ralstonia sp.
Burkholderiales (92 %),
Ralstonia (92 %)
49 —0.204 Gammaproteobacteria (99 %) LN829899.2 100 99 Arsenophonus sp.
63 —0.195 Alphaproteobacteria(94 %), JX993414.1 97 98 Methylobacterium sp.
Rhizobiales (94 %),
Methylobacterium (94 %)
90 —0.187 Proteobacteria (84 %) KM253240.1 97 94 Burkholderia sp.
112 -0.175 Betaproteobacteria (97 %), KM253240.1 97 98 Burkholderia sp.
Burkholderiales (89 %)
87 —0.165 Bacilli (96 %), Bacillales (91 %), HQ179145.1 97 100 Staphylococcus sp.
Staphylococcus (83 %)
31 0.144 Alphaproteobacteria (90 %) JX448502.1 96 99 Sphingomonas sp.
444 0.151 Alphaproteobacteria (91 %), KR265692.1 97 98 Methylobacterium sp.
Rhizobiales (91 %)
1191 0.186 Bacteroidetes (85 %) KM203869.1 94 97 Hymenobacter sp.
42 0.19 Alphaproteobacteria (94 %), KF681060.1 97 98 Methylobacterium sp.
Rhizobiales (94 %)
33 0.2 Actinobacteria (95 %), KR181798.1 97 99 Frondihabitans sp.
Actinomycetales (95 %),
Curtobacterium (89 %)
20 0.21 Alphaproteobacteria (96 %), AB698681.1 97 98 Methylobacterium sp.

Rhizobiales (96 %),
Methylobacterium (94 %)

NA non-available

the analysis. Our results indicate that the storage of oak leaves
in silica gel for a period of 2 weeks does not bias the compo-
sition of the foliar fungal community composition inferred by
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454-pyrosequencing. However, these results contrast with
those obtained by U’Ren et al. [53] for moss and lichen spe-
cies. Finally, a last prerequisite is the availability of network
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inference methods. Here, we used the Bayesian method of
network inference developed by Schwaller et al. [20] to high-
light the most likely microbial interactions in the habitat
formed by oak leaves (Q. robur L.).

Against expectation, our results suggested that mutualism,
facilitation, and commensalism may dominate microbial inter-
actions in oak leaves. More than half of the edges in the mi-
crobial interaction network were indeed positive. These re-
sults contrast with other findings showing that competition is
by far the most frequent outcome in microbial species inter-
actions [54, 55]. This high proportion of positive microbial
interactions may be accounted for by the fact that our analyses
were based on a snapshot of the microbial communities, taken
about 3 months after leaf unfolding. Many competitive inter-
actions may have occurred before this time point. The weaker
competitors may already have been excluded, tipping the
scales towards positive interactions.

Our results also revealed that the composition of the fungal
community of oak leaves changed markedly with the level of
E. alphitoides infection. The composition of the phyllosphere
yeast community, in particular, varied significantly with infec-
tion. The yeast species 7. carpini, for example, was associated
with highly infected leaves, whereas S. gracilis was found
more frequently on leaves with a low abundance of
E. alphitoides. The composition of the bacterial community
also changed significantly with the level of E. alphitoides
infection, but changes were less clear-cut than that of fungi.
According to the inferred microbial network, several direct
interactions between E. alphitoides and bacteria may however
occur. The positive interactions between bacterial OTUs and
the fungal pathogen may be accounted for by endosymbiosis
[56]. They may also be accounted for by commensalism. For
instance, bacteria may use dead hyphae as a source of nutri-
ents. Bacteria may also facilitate fungal infection [57] because
they benefit from the changes in plant metabolism induced by
the fungal pathogen.

In addition to phyllosphere yeasts and bacteria, several
fungal endophytes differed significantly in abundance be-
tween infected and uninfected leaves. M. punctiformis was
one of them. This species colonizes living oak leaves as an
endophyte, without causing symptoms, and then sporulates on
senescent leaves [58]. According to the microbial interaction
network, there may be a direct, antagonistic ecological inter-
action between M. punctiformis and E. alphitoides. This find-
ing suggests that M. punctiformis could protect oak leaves
against powdery mildew. E. alphitoides is an obligate parasite.
In vivo experiments are therefore required to validate the an-
tagonistic relationship between the two species and to deci-
pher the mechanism underlying the interaction. According to
our results, M. kansensis is another foliar endophyte that
might compete with E. alphitoides. This fungus has already
been observed on various Quercus species, including pedun-
culate oak [59], and it is known to produce various bioactive

compounds [60]. By contrast, the ubiquitous foliar endophyte
Cladosporium cladosporioides was positively linked to
E. alphitoides in the microbial interaction network. This en-
dophyte is considered to be a weakness parasite, becoming
virulent only when the host plant is weakened by stress. Its
abundance has been shown to be higher in declining oak trees
than in healthy trees [61]. Our results suggest that leaf infec-
tion with E. alphitoides might favor this species.

In conclusion, our results show that complex networks of
microbe-microbe interactions occur on oak leaves. Network
inference highlighted 13 bacterial OTUs and 13 fungal OTUs
likely to interact directly with the E. alphitoides, the causal
agent of oak powdery mildew. Two foliar endophytic spe-
cies—M. punctiformis and M. kansensis—were highlighted
as potential antagonists of E. alphitoides. Several
phyllosphere yeasts were also found to be likely to interact
directly with E. alphitoides. Controlled inoculations will be
required to validate these potential interactions. Studies of the
temporal dynamics of microbial networks during the course of
infection also appear to be a promising avenue of research
likely to provide deeper insight into the ecology of this disease
and to improve its biological control. The biological control of
forest diseases remains rare [62]. We show here that combin-
ing metagenomics and network inference may foster this
method of forest protection, by highlighting potential antago-
nistic interactions between pathogens and other
microorganisms.
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